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We present the three-dimensional linear stability analysis of a pressure-driven,
incompressible, fully developed, laminar flow in a channel delimited by rigid,
homogeneous, isotropic, porous layers. We consider porous materials of small
permeability in which the maximum fluid velocity is small compared to the mean
velocity in the channel region and for which inertial effects may be neglected. We
analyse the linear stability of symmetric laminar velocity profiles in channels with
two identical porous walls as well as skewed laminar velocity profiles in channels
with only one porous wall. We solve the fully coupled linear stability problem, arising
from the adjacent channel and porous flows, using a spectral collocation technique.
We validate our results by recovering the linear stability results of a flow in a channel
with impermeable walls as the permeabilities of the porous layers tend to zero. We
also verify that our results are consistent with the assumption of negligible inertial
effects in the porous regions. We characterize the stability of pressure-driven flows
by performing a parametric study in which we vary the permeability, porosity, and
height of the porous layers as well as an interface coefficient, τ , associated with the
momentum transfer process at the interfaces between the channel and porous regions.
We find that very small amounts of wall permeability significantly affect the Orr–
Sommerfeld spectrum and can dramatically decrease the stability of the channel flow.
Within our assumptions, in channels with two porous walls, permeability destabilizes
up to two Orr–Sommerfeld wall modes and introduces two new damped wall modes on
the left branch of the spectrum. In channels with only one porous wall, permeability
destabilizes up to one wall mode and introduces one new damped wall mode on
the left branch of the spectrum. In both cases, permeability also introduces a new
class of damped modes associated with the porous regions. The size of the unstable
region delimited by the neutral curve grows substantially, and the critical Reynolds
number can decrease to only 10 % of the corresponding value for a channel flow
with impermeable walls. We conclude our study by considering two real materials:
foametal and aloxite. We fit the porosity and interface coefficient τ to published data
so that the porous materials we model behave like foametal and aloxite, and we
compare our results with previously published numerical and experimental results.

1. Introduction
This study is motivated by the extensive use of wall permeability and transpiration

in studies of such diverse fields as filtration, papermaking, transpiration cooling,
aeronautics, the inhibition of wall turbulence, aquatic biology, flows through geological
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media, and biomechanics. As examples, we cite studies in industrial crossflow filtration
systems (Nassehi 1998); transpiration cooling of rocket engines and gas turbine blades
(Jiang et al. 2004); the use of wall suction to delay transition to turbulence over the
surface of a wing (Joslin 1998); fluid transport in blood vessels, the gastrointestinal
system, kidneys, and lungs where mass transfer between air, blood, and tissue occurs
at the walls (Majdalani, Zhou & Dawson 2002; Chang et al. 1989); sediment–water
interfaces over permeable seabeds (Goharzadeh, Khalili & Jørgensen 2005); and flow
through fractured geological formations (Berkowitz 2002).

Schlichting (see Schlichting & Gersten 2000) and Berman (1953) first modelled the
influence of continuous wall suction and blowing on boundary layers and chan-
nel flows, respectively, by prescribing a continuous wall-normal velocity and
simultaneously enforcing the no-slip condition. While this approach is now rarely used
in the porous flow community, where there has been considerable work on fluid flows
adjacent to porous media (see Ochoa-Tapia & Whitaker S. 1995a; Alazmi & Vafai
2001; Shavit, Rosenzweig & Assouline 2004), it remains common in the hydrodynamic
stability and flow control community where most work assumes that the flow inside
the porous walls and the effects of the porous walls on the tangential velocity at
the interfaces are negligible. One promising method of inhibiting wall turbulence, for
example, supposes that one could line the walls of a channel with small pores. The
pores inject and remove fluid in a coordinated effort to attenuate wall disturbances in
order to inhibit transition to turbulence or reduce skin-friction drag in fully developed
turbulent flows. Encouraging computer-simulated results have been obtained when
the pores are assumed to be sufficiently small and densely packed to allow the design
of controllers able to coordinate a continuously distributed actuation at the walls
(Kim 2003).

To the best of our knowledge, numerical investigations of boundary layer control
using the above method of actuation assume that the no-slip condition is satisfied
at the porous wall. While this assumption makes the numerical implementation of
the problem feasible, it is not clear that an actuated surface behaves like a solid
boundary when it is made of small, but finite, densely distributed pores. The no-slip
assumption may be non-physical because flows above porous walls generally have a
non-zero tangential velocity at the interface (Beavers & Joseph 1967). Furthermore,
there is experimental (Sparrow et al. 1973) and analytical evidence (Sparrow et al.
1973; Tilton & Cortelezzi 2006) that wall permeability can dramatically destabilize
channel flows in comparison to flows in channels with impermeable walls.

In order to put our study in perspective, we briefly outline previous pertinent work
on porous flows. In 1856, Darcy (see Lage 1998) developed the first empirical law
governing Stokes flow through porous media. Beavers & Joseph (1967) proposed
the first interface condition coupling a fully developed laminar channel flow with
an adjacent porous flow governed by Darcy’s law. Because Darcy’s law cannot
resolve boundary layers, the condition results in a velocity discontinuity at the
interface. Whitaker (1996) analytically derived general porous flow equations by
volume averaging the Navier–Stokes and continuity equations. Finally, Ochoa-
Tapia & Whitaker (1995a, b, 1998) analytically derived interfacial momentum transfer
conditions which couple a homogeneous fluid flow with an adjacent porous flow.

To the best of our knowledge, Beavers, Sparrow & Magnuson (1970) were the first
to report the destabilizing effects of wall permeability experimentally. Subsequently,
Sparrow et al. (1973) experimentally determined a few critical Reynolds numbers in
a channel with one porous wall, and performed a two-dimensional linear stability
analysis using Darcy’s law with the Beavers & Joseph (1967) interface condition.
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They found, both experimentally and numerically, that wall permeability decreased
the critical Reynolds number with respect to the value for a flow in a channel with
impermeable walls. More recently, Tilton & Cortelezzi (2006) performed a three-
dimensional linear stability analysis of a laminar flow in a channel with two identical,
homogeneous, isotropic, porous walls by modelling the flow in the porous walls using
the governing equations of Whitaker (1996) with the interface conditions of Ochoa-
Tapia & Whitaker (1995a). Tilton & Cortelezzi (2006) found that very small amounts
of wall permeability can dramatically decrease the stability of channel flows with
respect to channel flows with impermeable walls.

A thorough literature review of coupled channel flows and porous flows reveals
inconsistencies in the usage of the proper governing equations in the porous regions
and the interface conditions which couple the flow in porous regions to the flow in the
channel region. Tilton & Cortelezzi (2006) noted two recently published linear stability
analyses which claim to include inertial effects in porous regions without properly
accounting for these effects in the governing equations and interface conditions. More
recently, Chang, Chen & Straughan (2006) considered the linear stability of a channel
flow with one porous wall by modelling the flow in the porous region using Darcy’s
law with the Beavers & Joseph (1967) interface condition. While this model is valid if
inertial effects are negligible in the porous region, Chang et al. (2006) only considered
porous materials for which this not a good assumption. The current study attempts
to correct some of the misinterpretations of the governing equations and interface
conditions as well as provide a solid springboard for investigating the stability of
flows in the presence of interfaces with high-permeability porous materials.

In this study, we considerably extend and generalize the work by Tilton & Cortelezzi
(2006). The latter work considered a channel with two identical porous walls. The
porosity and height of the porous layers, as well as an interface coefficient, τ , associated
with the momentum transfer process at the interfaces between the channel and porous
regions, were fixed and only the permeability was varied. In the current study, we
analyse the linear stability of symmetric laminar velocity profiles in channels with two
identical porous walls, as well as skewed laminar velocity profiles in channels with only
one porous wall or two porous walls of differing permeability. We also characterize
the stability of pressure-driven flows by performing a parametric study in which we
vary the permeability, porosity, the height of the porous layers, and the coefficient τ .
Furthermore, we present the effects of wall permeability on both the Orr–Sommerfeld
and Squire modes. We find that the effects of small wall permeability on the linear
stability of channel flows is far richer and more complicated than previously observed
by Tilton & Cortelezzi (2006), and the overall stability of a channel with porous
walls is dictated by several competing mechanisms. Due to the presence of the porous
walls, there is a non-zero tangential and normal velocity at the interfaces between the
channel and the porous layers. By varying the height of the porous layers, we find that
the presence of a normal velocity is destabilizing. By varying the interface coefficient,
τ , we find that the presence of a tangential velocity is stabilizing. By considering
channels with only one porous wall or two porous walls of differing permeability, we
find that the presence of a non-symmetric laminar velocity profile has a stabilizing
effect. As in the work of Tilton & Cortelezzi (2006), we solve the fully coupled
linear stability problem, arising from the adjacent channel and porous flows, using a
spectral collocation technique, and we validate our results by recovering the linear
stability results of a flow in a channel with impermeable walls as the permeabilities
of the porous layers tend to zero. We also verify that our results are consistent with
the assumption of negligible inertial effects in the porous regions. We conclude our
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Figure 1. The channel geometry and laminar profile, not to scale, considered in this study.

study by considering two real materials: foametal and aloxite. We fit the porosity
and interface coefficient τ to published data so that the porous materials we model
behave like foametal and aloxite, and we compare our results with those of Sparrow
et al. (1973) and Chang et al. (2006).

We have organized this article as follows. In § 2, we describe the channel geometry
and discuss and justify our choice of governing equations and interface conditions.
In § 3, we derive a general analytical expression for the laminar profile. In § 4, we
non-dimensionalize the problem and derive the linear stability equations and interface
conditions. In § 5, we illustrate the numerical solution of the coupled problem. In § 6,
we present the results for the linear stability of symmetric laminar velocity profiles
in channels with two identical porous walls. In § 7, we present the results for skewed
laminar velocity profiles in channels with only one porous wall or two porous walls
of differing permeability and compare our results with those of Sparrow et al. (1973)
and Chang et al. (2006). Finally, we summarize our conclusions in § 8.

2. Governing equations
Figure 1 illustrates the channel geometry used in this study. The channel is delimited

by parallel, rigid, homogeneous, isotropic, porous layers sealed by impermeable walls.
We define the channel height as 2h and the height of the lower and upper porous
layers as 2h1 and 2h2, respectively, because it simplifies the numerical solution of
the coupled linear stability problem. A uniform pressure gradient, dp/dx, drives
a fully developed, laminar, incompressible flow, u(y), in the longitudinal direction
only, in both the channel region and the porous layers. The two porous layers do
not necessarily have the same properties or thicknesses, and in general, the laminar
flow in the channel region is skewed toward the porous region with larger interface
velocity. By setting the permeability of both porous regions to zero, we recover the
linear stability results for a flow in a channel with impermeable walls. By setting the
permeability of only one porous region to zero, we compare our results with those of
Sparrow et al. (1973) and Chang et al. (2006).
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Figure 2. Sketch of a porous medium with complicated fluid–solid interfaces and a wide
range of length scales. Not to scale.

2.1. The governing equations for the channel region

The flow of an incompressible viscous fluid in the channel region of figure 1 is
governed by the Navier–Stokes and continuity equations,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + µ∇2v, (2.1)

∇ · v = 0, (2.2)

where v = [u v w]T , p, ρ, and µ, are the fluid velocity vector, pressure, density, and
viscosity, respectively.

2.2. The governing equations for the porous regions and interface conditions

The flow of an incompressible viscous fluid through a porous medium is also governed
by the Navier–Stokes and continuity equations (2.1) and (2.2) with no-penetration
and no-slip conditions at the fluid–solid interfaces: see figure 2. Two common forms
of porous media are sponge-like porous foams, such as foametals, and porous beds
of packed particles, such as sand, gravel and aloxite. Solving the boundary value
problem governed by (2.1) and (2.2) is often prohibitively difficult because porous
media generally involve a wide range of length scales and have extremely complex
boundary conditions. The smallest length scales, lf and ls , are generally on the order
of an average pore and particle diameter, respectively, while the largest length scale,
L, is the characteristic macroscopic length of the porous medium: see figure 2. In this
study, for example, the macroscopic length scale, L, of the lower porous region is the
thickness of the porous layer, e.g. 2h1.

The method of volume averaging simplifies the problem by considering only the
large-scale behaviour of the flow in the porous regions, which is often referred to as
the macroscopic behaviour. This is done by averaging the governing equations over
a small volume, V, of radius r � L, and solving for volume-averaged values of the
velocity and pressure fields, see figure 2. In general, the length scales are assumed to
be well separated, i.e. ls ∼ lf � r � L. Whitaker (1986) notes that the radius r should
be large enough so that volume-averaged quantities result in smooth functions that
are free of small-scale fluctuations. Because volume-averaged quantities are associated
with the centroid of the averaging volume, V , every point in a volume-averaged flow
field, even a point within the solid, has a volume-averaged velocity associated with it,
and the porous medium is treated as a continuum.
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To identify the two different types of averages that are used in the method of
volume averaging, we adopt Whitaker’s convention (Whitaker 1996) which defines
the superficial volume average, 〈 〉, of some function, ψf , associated with the fluid as

〈ψf 〉 =
1

V

∫
Vf

ψf dVf ,

and defines the intrinsic volume average, 〈 〉f , as

〈ψf 〉f =
1

Vf

∫
Vf

ψf dVf ,

where Vf <V is the volume of fluid contained in the averaging volume, V . The two
averages are related by 〈ψf 〉 = ε〈ψf 〉f , where ε = Vf /V is the porosity, or volume-
fraction of the fluid. Note that the porosity varies between zero and one and is
generally a function of position, x, in a heterogeneous porous medium.

The volume-averaged Navier–Stokes and continuity equations derived by Whitaker
(1996) for an incompressible viscous fluid flowing through a rigid, homogeneous,
isotropic, porous medium are

ρ

ε

(
∂〈v〉
∂t

+
〈v〉 · ∇〈v〉

ε
+ ∇ · 〈v̌v̌〉

)
= −∇〈p〉f +

µ

ε
∇2〈v〉 − µ

k
〈v〉 − µ

k
F · 〈v〉, (2.3)

and

∇ · 〈v〉 = 0. (2.4)

The superficial volume-averaged velocity, 〈v〉, is the preferred representation of the
velocity because it is always solenoidal, while the intrinsic volume-averaged velocity,
〈v〉f , is only solenoidal in the case of constant porosity. For the pressure, however,
the intrinsic volume average, 〈p〉f , is preferred because it is the pressure measured by
a probe in an experimental apparatus. The permeability, k, measures the ease with
which fluid flows through a porous medium. If k = 0, the medium is impermeable,
while if k = ∞, the medium offers no resistance. In equation (2.3), the Darcy term,
µ〈v〉/k, represents a volume-averaged viscous drag, while the Forchheimer term,
µF · 〈v〉/k, where F is a second-order tensor, represents a drag due to inertial
effects. The exact form of F depends on the structure of the porous medium, but
experimentally it is often found to be a linear function of the volume-averaged
velocity, 〈v〉 (Beavers, Sparrow & Rodenz 1973; Joseph, Nield & Papanicolaou 1982;
Whitaker 1996; Giorgi 1997). The deviation velocity, v̌, is the difference between the
velocity, v, and the volume-averaged velocity, 〈v〉. It is important to note that volume
averaging the convective term, ρ(v·∇v), in the Navier–Stokes equation generates the
terms ρ(〈v〉 · ∇〈v〉)/ε2, ρ(∇ · 〈v̌v̌〉)/ε, and µF·〈v〉/k in equation (2.3). Whitaker (1996)
found that the convective terms 〈v〉 · ∇〈v〉/ε and ∇ · 〈v̌v̌〉 are of the same order of
magnitude and are both negligible in comparison with the dominant Forchheimer
term, µF · 〈v〉/k.

A thorough literature review reveals some inconsistencies in the proper form of
the equations governing flow through porous media (see discussions in Whitaker
1996; Giorgi 1997; Lage 1998). Note that the Darcy drag, µ〈v〉/k, and Forchheimer
drag, µF · 〈v〉/k, were originally observed experimentally. Several researchers have
attempted to derive generalized porous flow equations by artificially inserting these
volume-averaged drag terms into the Navier–Stokes equation (2.1). Lage (1998)
describes the fundamental error in this method as a mismatch in dimensions.
The Navier–Stokes equation deals with the velocity and pressure of small fluid
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parcels, while the Darcy and Forchheimer drag terms deal with volume-averaged
quantities. Generalized porous flow equations can also be derived using methods other
than volume averaging (see Giorgi 1997); however, the volume-averaged method is
particularly useful in coupling a channel flow to an adjacent porous region. Note that
Vafai & Tien (1981) and Hsu & Cheng (1990) have used volume averaging to derive
porous flow equations similar to equations (2.3) and (2.4). Without diminishing the
importance of their work, we prefer the derivation of Whitaker (1996) because it is,
to the best of our knowledge, the most complete and formal.

Equations (2.3) and (2.4) are not valid in a small heterogeneous transition layer
adjacent to the interface with the channel region. In the transition layer, the structure
of a porous medium undergoes rapid changes. Ochoa-Tapia & Whitaker (1995a,
1998), however, have derived momentum transfer conditions which use equations
(2.3) and (2.4) in the transition layer and correct for the error using a jump condition
in the shear stress. When inertial effects are non-negligible in the transition layer,
these conditions are quite complex and involve a vector and fourth-order tensor which
must both be determined experimentally (see Ochoa-Tapia & Whitaker 1998).

Because there are currently no published data for these quantities, we restrict our
analysis to flows for which the inertial effects can be ignored in the porous regions. This
greatly simplifies the interface conditions and also allows us to neglect the convective
terms 〈v〉 · ∇〈v〉/ε, ∇ · 〈v̌v̌〉, and µF · 〈v〉/k in equation (2.3). This assumption is only
valid for porous media of small permeability in which the flow velocities are small
with respect to the characteristic velocity in the channel region. The convective effects
become negligible because the dense structures of the porous matrix impede motion
between layers of fluid. We thus limit our study to permeabilities for which the
laminar interface velocity, U (±h), is much smaller than the mean flow, Um, in the
channel, i.e. U (±h) � Um. Following this assumption, the temporal term, ρ(∂〈v〉/∂t)/ε,
in equation (2.3) is small compared to the Darcy term (see Whitaker 1996); however,
we retain it because we expect the unsteady effects of the channel region to penetrate
slightly into the porous regions.

The flow equations in the porous regions become

ρ

εj

∂〈vj 〉
∂t

= −∇〈pj 〉f +
µ

εj

∇2〈vj 〉 − µ

kj

〈vj 〉, j = 1, 2, (2.5)

and

∇ · 〈vj 〉 = 0, j = 1, 2, (2.6)

and the momentum transfer conditions at the interfaces at y = ±h are

v = 〈vj 〉, p = 〈pj 〉f , j = 1, 2, (2.7)

1

εj

∂〈uj 〉
∂y

− ∂u

∂y
= ∓ τj√

kj

u,
1

εj

∂〈wj 〉
∂y

− ∂w

∂y
= ∓ τj√

kj

w, j = 1, 2. (2.8)

The subscript j refers to quantities in the lower, j = 1, and upper, j = 2, porous regions,
respectively. Note from (2.7)–(2.8) that the velocity and pressure at an interface are
continuous, while the shear stress has a jump proportional to the interface coefficient
τj which accounts for the distribution of momentum at the interface. For a more
thorough discussion of the physical significance of τ , we refer the reader to the work
of Ochoa-Tapia & Whitaker (1995a, b). The coefficient τ depends on the manner in
which a porous material’s structure varies in the heterogeneous transition layer and
on the surface machining of the interface. While there is recent work on determining
τ theoretically (Goyeau et al. 2006; Chandesris & Jamet 2006), it must usually
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be determined experimentally. Note that researchers often simply set τ = 0, which
generates an interface condition known as the Brinkman condition. Analytically,
Ochoa-Tapia & Whitaker (1995a) found that the coefficient τ is of order one and
may be either positive or negative. In a comparison with experiments by Beavers &
Joseph (1967), Ochoa-Tapia & Whitaker (1995b) found that the coefficient τ varied
roughly between −1.0 and 1.5 and can also be zero. When applying conditions (2.8) at
the upper interface, a negative sign precedes τ2 because the normal vector is defined as
pointing into the channel region. In all subsequent equations, the symbol ± indicates
that a positive sign is used when j = 2 and a negative sign is used when j = 1. The
converse is true for the symbol ∓.

Note that a thorough literature review reveals several other competing methods of
coupling a channel flow to an adjacent porous flow (see summary in Alazmi & Vafai
2001; Shavit et al. 2004). To the best of our knowledge, the methods of Beavers &
Joseph (1967) and Ochoa-Tapia & Whitaker (1995a) show the best agreement with
experiments. The method of Beavers & Joseph (1967) also uses an experimentally
determined interface coefficient which accounts for the distribution of momentum at
the interface. In this study, we use the approach of Ochoa-Tapia & Whitaker (1995a)
because it is a more precise representation of the physics near the interface (see
discussion in Ochoa-Tapia & Whitaker 1995b). Furthermore, while the approach of
Beavers & Joseph (1967) produces a velocity discontinuity at an interface, the method
of Ochoa-Tapia & Whitaker (1995a) produces a continuous profile that is closer to
the true behaviour of the volume-averaged velocity in the transition region. This has
been shown experimentally by Goharzadeh et al. (2005).

3. Laminar profile
A uniform longitudinal pressure gradient dp/dx drives a fully developed laminar

flow in both the channel and the porous layers. The flow in the channel region is
governed by the following equation,

d2u

dy2
=

1

µ

dp

dx
, (3.1)

while the flow in the porous regions is governed by the equation

kj

εj

d2〈uj 〉
dy2

− 〈uj 〉 =
kj

µ

dp

dx
, j = 1, 2. (3.2)

Because the pressure gradient is the same in all three regions, we have replaced
d〈p〉f /dx with dp/dx in equation (3.2). Note that (3.2) is Darcy’s equation with an
added term, kj (d

2〈uj 〉/dy2)/εj , called the Brinkman term. This term is only important
in the Brinkman boundary layers near the interfaces where the laminar velocity
decreases from its interface value to a constant value, 〈uj 〉 = kj (dp/dx)/µ, called the
Darcy velocity. Equations (3.1) and (3.2) are coupled at each interface, y = ± h, by
the momentum transfer conditions (2.7) and (2.8) and must also satisfy the no-slip
condition, 〈uj 〉 =0, at the impermeable walls located at y = ± (h + 2hj ).

As discussed in § 2.2, at each interface there is a transition layer in which the
structure of the porous medium undergoes rapid changes. Travelling within the
transition layer, from the porous region towards the interface, the local porosity
increases to unity (Ochoa-Tapia & Whitaker 1995b; Goharzadeh et al. 2005).
Numerical and experimental studies of flows over packed beds of granular materials
suggest that the Brinkman boundary layer thickness and the transition layer thickness
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are both on the order of the particle diameter associated with this type of porous
medium (see Sahraoui & Kaviany 1991; Ochoa-Tapia & Whitaker 1995b; Goharzadeh
et al. 2005). Because the momentum transfer conditions of Ochoa-Tapia & Whitaker
(1995a) assume that the porous regions are thicker than the transition layers, we
restrict our analysis to porous regions that are at least twice as thick as the Brinkman
layer, δB , associated with the interface. Using the definition suggested by Goharzadeh
et al. (2005), we define δB as the distance, measured from an interface into the porous
medium, at which the laminar velocity first approaches within 1 % of the Darcy
velocity.

We found that the impermeable walls bounding the porous layers at y = ± (h+2hj )
have no influence on the laminar velocity in the channel region, the Brinkman
layer, and the Darcy velocity, provided hj > δB . As we will see in § 4.3, we do not
explicitly need the laminar velocity profile in the porous regions in order to solve
the coupled linear stability problem. For simplicity, we therefore use the following
non-dimensionalized laminar profile which assumes that the porous regions are semi-
infinite. The laminar velocity profile in the channel region is

U = C

[
y2 +

B1 − B2

A1 − A2

y +
B1A2 − B2A1

A1 − A2

]
, (3.3)

while in the porous regions it is

〈Uj 〉 = C

{[
2σ 2

j + 1 +
∓(B2 − B1) + B1A2 − B2A1

A1 − A2

]
e(1∓y)

√
εj /σj − 2σ 2

j

}
, j = 1, 2,

(3.4)
where

C =

[
1

3
+

B1A2 − B2A1

A1 − A2

]−1

,

Aj = ∓1 ∓ σj

[
1

√
εj

− τj

]−1

, j = 1, 2,

Bj = 2σ 2
j + 1 + 2σj [1 + τjσj ]

[
1

√
εj

− τj

]−1

, j = 1, 2,

and the symbol σj =
√

kj/h is the non-dimensional permeability in the porous regions.
Equations (3.3) and (3.4) are general formulas valid for any σj , εj , and τj , within
our assumptions, and have been non-dimensionalized using the channel half-height,
h, as a characteristic length, and the ratio h/Um, as a characteristic time, where Um

is the mean velocity in the channel region. Although the coordinate y in equations
(3.3) and (3.4) is non-dimensional, for convenience we have kept the same notation
as in the dimensional case. Note that Beavers & Joseph (1967) and Sparrow et al.
(1973) defined the non-dimensional permeability as σ̂j =2h/

√
kj . We have chosen

our definition in order to recover flow in a channel with impermeable walls as both
σ1 and σ2 tend to zero. Beavers & Joseph (1967) interpret σj physically as a ratio

between a length scale characterizing the permeable material,
√

kj , and a length scale
characterizing the channel region, h.

In our numerical calculations, we use the laminar velocity profile (3.3) and (3.4)
which considers semi-infinitely wide porous layers, because at the small permeabilities,
σj , considered in this study, it behaves better than the profile obtained for porous
layers of finite height, given in Appendix A. The latter velocity profile contains sums
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Figure 3. (a) The laminar velocity profile for the parameters σ1 = σ2 = 0.02, ε1 = ε2 = 0.6,
τ1 = τ2 = 0, and h1 =h2 = h. (b) The laminar profile at the lower interface when the permeability
is varied, σ1 = σ2 = 0.0 (solid line), 0.005 (dash-dotted line), 0.01 (dashed line), and 0.02 (dotted
line) (ε1 = ε2 = 0.6, τ1 = τ2 = 0, h1 = h2 =h). (c) The laminar profile at the lower interface when
the interface coefficient is varied, τ1 = τ2 = − 1.0 (dash-dotted line), 0.0 (solid line), 1.0 (dashed
line), and 1.2 (dotted line) (σ1 = σ2 = 0.02, ε1 = ε2 = 0.6, h1 = h2 = h). (d) The laminar profile at
the lower interface when the porosity is varied, ε1 = ε2 = 0.2 (solid line), 0.4 (dash-dotted line),
0.6 (dashed line), and 0.8 (dotted line) (σ1 = σ2 = 0.02, τ1 = τ2 = 0, h1 =h2 = h).

of terms of the form ± exp(1/σj ) which at small permeabilities become very large
and cause significant rounding errors. The laminar velocity profile of a flow in a
channel with only one porous wall is computed by setting either σ1 or σ2 in equations
(3.3) and (3.4) to zero. The laminar velocity profile of a flow in a channel with two
impermeable walls is recovered by setting both σ1 and σ2 in equations (3.3) and (3.4)
to zero.

In order to investigate how σj , τj , and εj affect the laminar velocity profile, we
vary σj while holding εj and τj constant, then we vary τj while holding σj and
εj constant, and finally we vary εj while holding σj and τj constant. Figure 3(a)
illustrates the laminar velocity profile generated using equations (3.3) and (3.4) and
the parameters σ1 = σ2 = 0.02, ε1 = ε2 = 0.6, τ1 = τ2 = 0, and h1 = h2 = h. Note that the
interface velocity is 4.55% Um, one of the highest considered in our study, and the
Darcy velocity outside the Brinkman layer is only on the order of 0.1% Um. Figure 3(b)
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illustrates the laminar velocity profile at the lower interface when the permeability
is varied, σ1 = σ2 = 0.0, 0.005, 0.01, and 0.02, while holding ε1 = ε2 = 0.6, τ1 = τ2 = 0,
and h1 = h2 = h constant. Note that the laminar interface velocity and the Brinkman
layer thickness, δB , both increase as the permeability increases. Also note that we
recover flow in a channel with impermeable walls when σ =0.0. Figure 3(c) illustrates
the laminar velocity profile at the lower interface when the interface coefficient is
varied, τ1 = τ2 = −1.0, 0.0, 1.0, and 1.2, while holding σ1 = σ2 = 0.02, ε1 = ε2 = 0.6, and
h1 = h2 = h constant. As τ increases, more momentum is transferred from the channel
flow to the Brinkman layer, and both the laminar interface velocity and the Brinkman
layer thickness increase. For this particular choice of parameters, τ above 1.2 begins
to produce physically impossible laminar profiles with interface velocities that are
larger than the maximum velocity in the channel region. Figure 3(d) illustrates the
laminar profile at the lower interface when the porosity is varied, ε1 = ε2 = 0.2, 0.4, 0.6,
and 0.8, while holding σ1 = σ2 = 0.02, τ1 = τ2 = 0, and h1 = h2 = h constant. Note how
the laminar interface velocity increases and the Brinkman layer thickness decreases
with increasing ε.

4. Linear stability equations
4.1. Non-dimensionalization of the governing equations

We make the problem non-dimensional using the same characteristic length and time
with which the laminar velocity profile (3.3) and (3.4) has been non-dimensionalized.
We define the non-dimensional pressure as p/ρU 2

m, and the Reynolds number as
Re = ρUmh/µ. We use capital italics to represent the non-dimensionalized velocity,
〈U1〉, U , and 〈U2〉, and pressure, P (x), of the fully developed laminar flow, or base
flow. All subsequent equations are non-dimensional except when explicitly noted.

The non-dimensionalized channel flow equations are

∂v

∂t
+ v · ∇v = −∇p +

1

Re
∇2v, (4.1)

and

∇ · v = 0, (4.2)

while the non-dimensionalized porous flow equations become

1

εj

∂〈vj 〉
∂t

= −∇〈pj 〉f +
∇2〈vj 〉
εjRe

− 〈vj 〉
σ 2

j Re
, j = 1, 2, (4.3)

and

∇ · 〈vj 〉 = 0, j = 1, 2. (4.4)

The non-dimensionalized momentum transfer conditions at the interfaces at y = ± 1
become

v = 〈vj 〉, p = 〈pj 〉f , j = 1, 2, (4.5)

σj

εj

∂〈uj 〉
∂y

− σj

∂u

∂y
= ∓τju,

σj

εj

∂〈wj 〉
∂y

− σj

∂w

∂y
= ∓τjw, j = 1, 2, (4.6)

and the boundary conditions at y = ± (1 + 2hj/h) are

〈vj 〉 = 0, j = 1, 2. (4.7)
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4.2. Linear stability equations in the channel region

We analyse the stability of the fully developed laminar flow, or base flow, in the
channel region, U (y) and P (x), with respect to small planar wave perturbations,
v̂ = [û v̂ ŵ]T and p̂, of the form(

v̂

p̂

)
=

(
ṽ(y)

p̃(y)

)
ei(αx+βz−αct), (4.8)

where |v̂/U | � 1 and |p̂/P | � 1. The perturbations v̂ and p̂ travel in the direction
(α, 0, β) with streamwise and spanwise wavenumbers α and β , respectively, and a
wall-normal structure given by the amplitude functions ṽ(y) and p̃(y). We consider a
temporal linear stability analysis where the wavenumbers, α and β , are assumed to
be real, while the streamwise phase speed, c = cr + ici , and the amplitude functions
are in general complex. A perturbation is unstable when the imaginary part of the
phase speed is positive, ci > 0.

The linear stability equations for the channel region are obtained by substituting
the perturbed base flow, U (y) + v̂ and P (x) + p̂, into equations (4.1) and (4.2)
and linearizing them. Equation (4.8) is then used to obtain the well-known Orr–
Sommerfeld equation[

(U − c)(D2 − κ2) − U ′′ − 1

iαRe
(D2 − κ2)2

]
ṽ(y) = 0, (4.9)

and Squire equation [
(U − c) − 1

iαRe
(D2 − κ2)

]
η̃(y) = −βU ′ṽ

α
, (4.10)

where a prime and D both denote d/dy, κ =
√

α2 + β2, ṽ is the amplitude of the
wall-normal velocity perturbation, and η̃ = ∂ũ/∂z − ∂w̃/∂x is the amplitude of the
wall-normal vorticity perturbation, respectively. We refer the reader to Schmid &
Henningson (2001) for a more thorough derivation of equations (4.9) and (4.10).

4.3. Linear stability equations in the porous regions

Because the porous flow equations (4.3) and (4.4) are linear, there is no need to
linearize them about the laminar base flow, 〈Uj 〉. We assume that the perturbations
in the porous regions also have wave-like forms given by(

〈v̂j 〉
〈p̂j 〉f

)
=

(
ṽj (y)

p̃j (y)

)
ei(αx+βz−αct), j = 1, 2, (4.11)

so that the wave-like perturbations in all three regions have identical wavenumbers
and phase speeds. The linear stability equations for the porous regions are obtained
by substituting expressions (4.11) into equations (4.3) and (4.4) and rearranging the
resulting equations for ṽj (y) and p̃j into the following counterparts to the Orr–
Sommerfeld and Squire equations in the porous regions:[

−c(D2 − κ2) − 1

iαRe
(D2 − κ2)2 +

εj

iασ 2
j Re

(D2 − κ2)

]
ṽj (y) = 0, j = 1, 2, (4.12)
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and [
−c − 1

iαRe
(D2 − κ2) +

εj

iασ 2
j Re

]
η̃j (y) = 0, j = 1, 2. (4.13)

Note that because inertial effects have been neglected in the porous regions, equations
(4.12) and (4.13) lack any term directly coupling the disturbances in the porous regions
with the laminar profile in the porous regions. For the same reason, equation (4.13)
is homogeneous, unlike the Squire equation (4.10). However, the stability equations
(4.12) and (4.13) have new terms, εj (D

2 − κ2)/iασ 2
j Re and εj/iασ 2

j Re, respectively,
arising from the Darcy drag term.

Squire’s transformation states that for each unstable three-dimensional disturbance,
ṽ, there is a corresponding unstable two-dimensional disturbance at a smaller
Reynolds number. To show that Squire’s transformation holds in both the channel
and the porous regions, consider that a three-dimensional disturbance obeys equations
(4.9) and (4.12), while a two-dimensional disturbance obeys the equations below, found

by setting β =0, α = α̂, and Re = R̂e:[
(U − c)(D2 − α̂2) − U ′′ − 1

iα̂R̂e
(D2 − α̂2)2

]
ṽ(y) = 0, (4.14)

and [
c(D2 − α̂2) +

1

iα̂R̂e
(D2 − α̂2)2 − εj

iσ 2
j α̂R̂e

(D2 − α̂2)

]
ṽj = 0, j = 1, 2. (4.15)

Equations (4.9) and (4.12) have identical solutions to (4.14) and (4.15) as long as

α̂ = κ and α̂R̂e = αRe. Hence,

R̂e =
α

κ
Re < Re.

Thus, for each unstable three-dimensional disturbance with the Reynolds number,
Re, there is a corresponding unstable two-dimensional disturbance with a smaller

Reynolds number, R̂e.

4.4. Boundary and interface conditions

Using the momentum transfer conditions (4.5)–(4.6), we derive the conditions coupling
ṽ and ṽj at the interfaces located at y = ± 1:

ṽ = ṽj ,
dṽ

dy
=

dṽj

dy
, j = 1, 2, (4.16)

−σj

εj

d2ṽj

dy2
+ σj

d2ṽ

dy2
= ±τj

dṽ

dy
, j = 1, 2, (4.17)

[(
1

εj

− 1

)(
iαc − κ2

Re

)
− 1

σ 2
j Re

+ iαU

]
dṽ

dy

+
1

Re

d3

dy3

(
ṽj

εj

− ṽ

)
− iαU ′

chṽ = 0, j = 1, 2, (4.18)

and the conditions coupling η̃ and η̃j at each interface

η̃ = η̃j ,
σj

εj

dη̃j

dy
− σj

dη̃

dy
= ∓τj η̃, j = 1, 2, (4.19)
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where U ′
ch denotes the value of U ′ evaluated on the channel side of the interface

because U ′ is generally discontinuous at the interface. The perturbations must also
satisfy the boundary conditions at the impermeable walls located at y = ±(1+2hj/h),

η̃j = ṽj =
dṽj

dy
= 0, j = 1, 2. (4.20)

5. Solution of the coupled linear stability problem
In this section, we illustrate the numerical method we use to solve the fully coupled

linear stability problem. For simplicity, we discuss the case where h1 = h2 = h. The
problem in the channel region is solved with respect to the axes (x, y, z) with origin
located on the channel centreline, while the problems in the porous regions 1 and 2
are solved with respect to coordinate systems (x1, y1, z1) and (x2, y2, z2), respectively,
with origins located midway between the interfaces and the impermeable walls.

We approximate the perturbation amplitude functions ṽ(y), ṽ1(y1), and ṽ2(y2) using
three finite Chebyshev expansions,

ṽ(y) =

N∑
n=0

anTn(y), (5.1)

ṽ1(y1) =

N∑
n=0

dnTn(y1), ṽ2(y2) =

N∑
n=0

enTn(y2). (5.2)

In the channel region, we force expansion (5.1) to satisfy the Orr–Sommerfeld
equation (4.9) at the Gauss–Lobatto points, yn = cos (nπ/N), where n = 0, . . . , N

(e.g. Schmid & Henningson 2001). This produces the generalized eigenvalue problem

Aa = cBa, (5.3)

for the eigenvalue c and eigenvector a of the N +1 expansion coefficients an. Similarly,
in the porous regions 1 and 2, we force expansions (5.2) to satisfy equation (4.12)
at the Gauss–Lobatto points on the wall-normal axes y1 and y2, respectively. This
produces two more generalized eigenvalue problems,

Dd = cσ 2
1 Bd, Ee = cσ 2

2 Be, (5.4)

for the eigenvalue c and the eigenvectors d and e of the N + 1 expansion coefficients
dn and en, respectively.

To solve the coupled eigenvalue problem, we assemble the three matrix equations
(5.3)–(5.4) in the following compound matrix equation⎛⎜⎝E 0 0

0 A 0

0 0 D

⎞⎟⎠
⎛⎜⎝ e

a

d

⎞⎟⎠ = c

⎛⎜⎝σ 2
2 B 0 0

0 B 0

0 0 σ 2
1 B

⎞⎟⎠
⎛⎜⎝ e

a

d

⎞⎟⎠ , (5.5)

and impose the boundary and interface conditions following the procedure outlined
by Schmid & Henningson (2001): the expansions (5.1)–(5.2) are substituted into the
conditions (4.16)–(4.18) and (4.20), and the resulting twelve conditions are imposed
by replacing 12 rows of the compound matrix equation (5.5).

To determine the number N of Chebyshev polynomials necessary to accurately
resolve the problem, we verify convergence with respect to the twenty least stable
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Figure 4. Log-log plots of the relative error, eN , versus the number of Chebyshev polynomials
used to solve the problem, N . The parameters are ε1 = ε2 = 0.6, τ1 = τ2 = 0.5, h1 = h2 = h,
Re = 2000, α = 1, β =1, (a) σ1 = σ2 = 0.0005, (b) σ1 = σ2 = 0.01.

eigenvalues. Using the L2 norm, we define the relative error for a given N as

eN =
‖cN+1 − cN‖2

‖cN‖2

,

where cN and cN+1 are vectors whose components are the twenty least stable
eigenvalues generated using N and N + 1 Chebyshev polynomials, respectively, in
each region. Small permeabilities require many collocation points near the interfaces
in order to resolve the behaviour of the disturbances in the small Brinkman layers.
As a result, the number of polynomials required for convergence generally tends to
increase as the permeability decreases. For permeabilities on the order of σ = 0.01,
roughly 100 polynomials are sufficient in each region to attain an error on the order
of 10−10: see figure 4(b). Very small permeabilities below σ = 0.0005, however, can
require up to 300 polynomials in each region to attain an error on the order of 10−9:
see figure 4(a). The number of polynomials required for convergence also tends to
increase as the half-heights of the porous regions, hj , j = 1, 2, increase, because this
stretches the Gauss–Lobatto points over a greater interval. For each particular choice
of permeabilities and half-heights of the porous layers, we always attempt to use the
minimum N for which the corresponding error plot reaches the minimum-possible
error, which is usually on the order of 10−9 or 10−10, as illustrated in figure 4.

6. Linear stability results for symmetric laminar velocity profiles
Wall permeability affects the linear stability of a channel flow by altering the

laminar velocity profile and allowing the presence of non-zero perturbation velocities
at the porous interfaces. Beavers & Joseph (1967) observed that the velocity profile
of a fully developed laminar flow in a channel with porous walls is skewed toward
the wall with larger interface velocity. Fu & Joseph (1970) found that asymmetric
laminar velocity profiles in channels with impermeable walls tend to be linearly
more stable than symmetric velocity profiles provided the asymmetric profiles have
no inflection points. In order to investigate the effects of the normal and tangential
velocity components at the porous interfaces and remove the stabilizing effect of a
skewed laminar velocity profile, we begin our study by considering the linear stability
of symmetric laminar velocity profiles in channels with two identical porous walls.
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Figure 5. Using the constant parameters ε = 0.6, τ =0, and hp = h: (a) the trajectory of
the Orr–Sommerfeld eigenvalues for Re = 3000, α = 1, and β =0 as σ is increased from
σmin = 0.0002 (circled) to σmax =0.02; (b) the trajectory of the Squire spectrum for Re = 3000,
α = 1, and β = 1 as σ is increased from σmin = 0.0002 (circled) to σmax = 0.02.

The stability of skewed laminar velocity profiles will be considered separately in § 7.
For simplicity, in this section we will drop the subscript j = 1, 2 denoting the upper
and lower porous regions and use simply σ , ε, τ , and hp to denote the permeability,
porosity, interface coefficient, and half-height, respectively, of the two identical porous
layers.

This section significantly extends the work of Tilton & Cortelezzi (2006) and is
organized in the following manner. In § 6.1, we investigate the effects of permeability, σ ,
on the linear stability of a symmetric laminar velocity profile in a channel characterized
by the parameters ε =0.6, τ = 0, hp = h, and 0.0002 <σ < 0.02 in great detail. In § 6.2,
we investigate the effects of the interfacial coefficient, τ , by varying τ between −1
and 1. In § 6.3, we investigate the effects of the height of the porous regions, hp , by
varying hp between 0.25h and 2h. In § 6.4, we discuss the validity of ignoring inertial
effects in the porous regions, and in § 6.5, we fit the parameters ε and τ so that the
porous materials we model behave like foametal and aloxite, two materials used in
the experiments of Beavers & Joseph (1967).

6.1. The effects of permeability, σ , on linear stability

To characterize the effects of permeability, we fix the parameters ε =0.6, τ = 0, and
hp =h, and vary only the non-dimensional permeability, σ =

√
k/h, below a maximum

value consistent with our requirement that the laminar interface velocity, U (±1), is
much less than the mean laminar velocity, Um, in the channel region. This procedure
is equivalent to laboratory experiments which vary the non-dimensional permeability
by varying the channel half-height h (Beavers & Joseph 1967; Beavers et al. 1970;
Sparrow et al. 1973), since when h increases, σ =

√
k/h decreases and vice versa. Note

that there is no way to choose the maximum-allowable interface velocity without first
obtaining an estimate for the critical Reynolds number. We therefore begin by setting
the maximum-allowable interface velocity, U (±1), to a reasonable value of 5 % Um.
In § 6.4, we use our results for the critical Reynolds numbers to verify this choice.

Figure 5(a) illustrates the trajectory of the Orr–Sommerfeld eigenvalues as the
permeability is increased from σmin = 0.0002 to σmax = 0.02, for Re =3000, α =1, and
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β = 0. The maximum permeability corresponds to a maximum laminar interface
velocity of 4.55 % Um. The laminar velocity profile for σmax is illustrated in
figure 3(a). The circled eigenvalues in figure 5(a) correspond to σmin and are within
3 decimal places of the eigenvalues associated with a corresponding channel flow
with impermeable walls. Note that the circled eigenvalues in figure 5(a) are located
on three branches. The eigenvalues on the upper left branch are called wall modes
because their eigenfunctions, ṽ, vary mostly near the wall. For this reason, we expect
that permeability will affect these modes more than the others. The eigenvalues on
the upper right branch are called centre modes because their eigenfunctions, ṽ, vary
mostly near the centre of the channel. The modes on the lower branch are highly
damped.

Permeability destabilizes two Orr–Sommerfeld wall modes, labelled 1 and 2 in
figure 5(a). Wall mode 1 becomes unstable at a critical permeability of σc = 0.00222
for which the laminar interface velocity is only 0.515 % Um. Wall mode 2 becomes
unstable at a critical permeability of σc = 0.01264 for which the laminar interface
velocity is 2.899 % Um. At σmax , wall modes 1 and 2 have exponential growth rates,
αci , of 0.2404 and 0.1081, respectively. Figure 6(a) illustrates the eigenfunction, ṽ,
of wall mode 1 at σmin . The amplitude of the perturbation velocity vanishes at the
interfaces, and we recover the Tollmien–Schlichting wave observed in a channel flow
with impermeable walls. Figure 6(b) illustrates the same eigenfunction at σmax = 0.02.
The amplitude of the perturbation velocity no longer vanishes at the interfaces and
decreases monotonically in the porous regions.

Permeability introduces two new wall modes, labelled 3 and 4 in figure 5(a), which
are similar in structure to the pre-existing wall modes labelled 5 and 6 respectively.
Note that the trajectories of modes 5 and 6 in figure 5(a) intersect and may be hard
to distinguish visually. It may help the reader to know that at σmax =0.02, mode 5 is
to the right of mode 6. The eigenfunctions corresponding to modes 3, 4, 5 and 6 are
illustrated in figures 6(c)–6(f) for σmax = 0.02. Note that the eigenfunctions of modes
3 and 5 are symmetric, while the eigenfunctions of modes 4 and 6 are antisymmetric,
and that the eigenfunctions of modes 3 and 4 have one more oscillation near the
interfaces than modes 5 and 6.

Permeability introduces a group of new eigenvalues labelled 7 in figure 5(a).
These eigenvalues occur in repeated pairs and approach the real axis, but never
become unstable, as the permeability increases. We refer to them as porous modes
because their eigenfunctions vary mostly in the porous regions. For each of these
pairs of repeated eigenvalues there is a corresponding pair of eigenfunctions, one
of which is symmetric and the other of which is antisymmetric, as illustrated in
figures 6(g) and 6(h). Note that these modes have small, but non-zero, phase speeds,
cr . The least stable pair, for example, has a phase speed of 0.000155 at σmax . The
ensemble of these modes appears to indicate the existence of a continuous spectrum
as the thickness of the porous layers tends to infinity. When solving the Orr–
Sommerfeld equation for an infinite or semi-infinite domain, one generally encounters
a discrete spectrum and a continuous spectrum. The Blasius boundary layer, for
example, has a discrete spectrum and a continuous spectrum that is a vertical line
in the complex plane (e.g. see Schmid & Henningson 2001). Sparrow et al. (1973)
also noted the analogy between the spectral features of the current problem and
those of the Blasius boundary layer. The analogy is due to the fact that in a
Blasius boundary layer flow, the perturbation velocity diminishes in the free stream,
while in the current problem, the perturbation velocity diminishes in the porous
regions.
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Figure 6. Eigenfunctions, |ṽ| (solid line), ṽr (dashed line), ṽi (dotted line), of selected
eigenvalues labelled in figure 5(a): (a) mode 1 at σmin ; (b) mode 1 at σmax ; (c) mode 3
at σmax ; (d) mode 4 at σmax ; (e) mode 5 at σmax ; (f) mode 6 at σmax ; (g) and (h) least stable
pair of porous modes at σmax .
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αci

Re σ = 0.0 σ = 0.0002 σ = 0.002 σ = 0.02

2000 −0.015277 −0.015239 −0.012495 0.191007
3000 −0.004750 −0.004708 −0.000907 0.240428
4000 0.000485 0.000532 0.005388 0.269851
5000 0.003354 0.003407 0.009311 0.289311

Table 1. For the Reynolds numbers in the left column, the columns to the right show the
growth rate, αci , of the eigenvalue labelled 1 in figure 5(a) when the permeability is σ = 0.0
(second column), σ = 0.0002 (third column), 0.002 (fourth column), and 0.02 (fifth column).
All other parameters are held constant: α = 1, β = 0, ε = 0.6, τ = 0, and hp = h.

Table 1 shows the numerical values for the growth rate, αci , of the Tollmien–
Schlichting wave, which is labelled 1 in figure 5(a), when the Reynolds number is
Re =2000, 3000, 4000, and 5000, and the permeability is σ = 0.0, 0.0002, 0.002, and
0.02. All other parameters are held constant: α = 1, β = 0, ε = 0.6, τ =0, and hp = h.
Note that the growth rates for the minimum permeability, σmin = 0.0002, are within
three decimal places of those for σ =0.0. As the permeability increases to σ =0.002
and 0.02, however, the growth rates are considerably larger than those for σ =0.0.
Also note how the increase in growth rate due to an increase in Reynolds number
increases with permeability and is greater in a channel with porous walls than in
a channel with impermeable walls. Similar behaviour has been observed with the
eigenvalues labelled 2, 3, 4, and 7, in figure 5(a).

When ṽ = 0, the Orr–Sommerfeld equation (4.9) is identically zero and the Squire
equation (4.10) is homogeneous and constitutes an eigenvalue problem for a new set
of eigenvalues, csq = csq

r + icsq
i , called Squire modes. We have added the superscript

to stress that the Squire modes, csq , are generally different from the Orr–Sommerfeld
modes, c. Figure 5(b) illustrates the trajectory of the Squire eigenvalues for Re = 3000,
α = 1, and β = 1 as the permeability, σ , is increased from σmin =0.0002 to σmax = 0.02.
The circled eigenvalues correspond to σmin and are within 3 decimal places of the
eigenvalues associated with a corresponding flow in a channel with impermeable walls.
Permeability again introduces a new class of porous modes, labelled 8 in figure 5(b),
but does not significantly affect the pre-existing modes. In all the cases we have
considered, we have observed that wall permeability does not destabilize the Squire
modes. We thus set the spanwise wavenumber, β , to zero when computing the neutral
curves.

Figure 7(a) illustrates the effects of permeability on the neutral curve. The neutral
curve for a channel flow with impermeable walls (σ =0.0) is illustrated to the right,
with the unstable region shaded a dark grey. The neutral curves for σ = 0.002, 0.006,
and 0.02 are represented with solid lines and the corresponding unstable regions are
shaded with successively lighter shades of grey. Note how the shaded unstable regions
become larger and more blunt as permeability increases. As a result, the number of
unstable wavenumbers, α, for a fixed Reynolds number, increases as the permeability
increases.

Figure 7(b) illustrates the dependence of the critical Reynolds number on the
permeability. The critical Reynolds number at σmin = 0.0002 is 3835.49, while the
corresponding Poiseuille value is 3848.17. As the permeability increases, the critical
Reynolds number drops sharply and eventually reaches a value of 416.03 at σmax ,
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Figure 7. (a) The neutral curves for σ = 0.0, 0.002, 0.006, and 0.02 using ε = 0.6, hp = h, and
τ = − 1.0 (dash-dotted lines), 0.0 (solid lines) and 1.0 (dashed lines). The unstable regions
for σ = 0.0 (darkest grey), 0.002, 0.006, 0.02 (lightest grey) using ε = 0.6, hp = h, and τ = 0
are shaded progressively lighter shades of grey. (b) The critical Reynolds number, Rec , vs
permeability, σ , using ε = 0.6, hp = h, and τ = − 1.0 (dash-dotted line), 0.0 (solid line), and 1.0
(dashed line). (c) The critical wavenumber, αc , vs. permeability, σ , using ε = 0.6, hp = h, and
τ = − 1.0 (dash-dotted line), 0.0 (solid line), and 1.0 (dashed line). (d) The laminar interface
velocity, U (±1) (dashed line), and the critical Reynolds number, Rec (solid line), vs τ , using
σ = 0.005, ε = 0.6, and hp = h.

or roughly 10 % of the corresponding Poiseuille value. Meanwhile, the critical
wavenumber, illustrated in figure 7(c), increases from a value of 1.02 at σmin , which is
equal to the corresponding value for a channel flow with impermeable walls, to 1.34
at σmax .

6.2. The effects of varying τ on linear stability

To characterize the effects of the interfacial coefficient, τ , we have repeated the analysis
presented in § 6.1 for τ = 1 and −1. Figure 7(a) illustrates that the neutral curves for
τ = −1 (dash-dotted line) are nearly indistinguishable from those for τ =0 (solid line),
while those for τ = 1 (dashed line) are significantly more stable. Figure 7(b) illustrates
the dependence of the critical Reynolds number on the permeability for τ = −1, 0, and
1. The results for τ = − 1 (dash-dotted line) are again nearly indistinguishable from
the results for τ = 0 (solid line), while the results for τ = 1 (dashed line) are noticeably
more stable. At σmax , the critical Reynolds number for τ = − 1 (dash-dotted line) is
416.524, roughly 0.1 % greater than the result for τ =0 (solid line), while the critical
Reynolds number for τ = 1 (dashed line) is 519.459, roughly 25 % greater than the
result for τ = 0 (solid line). Figure 7(c) illustrates that the critical wavenumbers for
τ = −1 (dash-dotted line) are nearly indistinguishable from those for τ = 0 (solid line)
except near σmax , while the critical wavenumbers for τ = 1 (dashed line) are signifi-
cantly smaller. The regions between the upper and lower curves in figures 7(b)–7(c)
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have been shaded to represent the sort of error one may incur by assuming the
Brinkman condition, τ = 0, in cases when τ �= 0.

Note that the laminar interface velocity for a given permeability increases with τ .
We have marked the curves for τ = 1 in figures 7(b) and 7(c) with a diamond at the
permeability, σ = 0.005, at which the laminar interface velocity is close to 5 % Um.
The diamond indicates that higher permeabilities may violate the maximum-allowable
laminar interface velocity and inertial effects may, as a result, be non-negligible in the
porous regions. The increase in the tangential interface velocity with τ is one possible
explanation for the increase in critical Reynolds number between τ = 0 and τ = 1.
Two recent studies of channel flows with impermeable hydrophobic walls (Lauga &
Cossu 2005; Min & Kim 2005) found that the presence of slip at the walls tends to
increase the linear stability of channel flows.

To gain more insight, figure 7(d) illustrates the behaviour of the critical Reynolds
number (solid line) and the laminar interface velocity (dashed line) in the range
−1 < τ < 1 for constant σ = 0.005, ε = 0.6, and hp = h. The critical Reynolds number
reaches a minimum of 1718.15 at τ = 0.3. Note that while the critical Reynolds
number increases markedly in the region 0.3 <τ < 1, it is comparatively less sensitive
to τ in the range −1 <τ < 0.3. One possible explanation for this behaviour is that
the presence of a normal velocity at the interface is generally destabilizing, while
the presence of a tangential velocity at the interface is generally stabilizing. In the
range −1 <τ < 0.3, the destabilizing effects of the normal interface velocity dominate,
while in the range 0.3 <τ < 1 the destabilizing effects of the normal interface velocity
are mitigated by the increasing tangential interface velocity, illustrated in figure 7(d)
as a dashed line. We expect that the full physical mechanism is more complicated,
however, because the Reynolds number does not increase monotonically with τ .

6.3. The effects of varying hp on linear stability

To characterize how the linear stability results are affected when the half-height of
the porous layers, hp , is varied in relation to the half-height of the channel region,
h, we repeated the analysis of § 6.1 for hp = 2h, h, 0.5h, and 0.25h, maintaining
constant ε = 0.6 and τ = 0. Figures 8(a) and 8(b) illustrate the Orr–Sommerfeld
spectra computed using σmax = 0.02, Re = 3000, α = 1, β =0, and hp = 0.25h and 2h,
respectively. Comparing the two figures we first note that the eigenvalues labelled 1
and 2 in figure 8(a) for the case hp = 0.25h are less unstable than the corresponding
eigenvalues in figure 8(b) for the case hp = 2h. Secondly, we note that the porous
modes in figure 8(b) for the case hp = 2h are more densely packed along a nearly
vertical line. Hence, as expected, the ensemble of the porous modes behaves more like
a continuous spectrum as the height of the porous regions increases in relation to the
channel height.

Figure 8(c) illustrates the critical Reynolds numbers computed in the range
0.0002 � σ � 0.02. The Reynolds numbers computed using hp = h (solid line) and
hp = 2h (dotted line) are visually indistinguishable, while the Reynolds numbers
computed using hp =0.5h (dash-dotted line) and hp =0.25h (dashed line) are
increasingly more stable. In order to explain the increase in linear stability with
decreasing hp , we analyse the structure of the eigenfunction, ṽ, of the most unstable
mode. Figure 8(d) compares the eigenfunction, ṽ, of the least stable eigenvalue,
labelled 1 in figures 8(a) and 8(b), using both hp = h and hp = 0.25h, while maintaining
Re =3000, α = 1, and β = 0 constant. Since ṽ is generally complex, we simplify the
plot by only illustrating the magnitudes, |ṽ|, which have been scaled so that the
maximum centreline value is unity. From figure 8(d), we see that decreasing hp in
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Figure 8. For the parameters ε = 0.6, τ =0, and β = 0: (a) the Orr–Sommerfeld spectrum
for σmax =0.02, Re = 3000, α = 1, and hp =0.25h; (b) the Orr–Sommerfeld spectrum for
σmax =0.02, Re = 3000, α = 1, and hp = 2h; (c) the critical Reynolds number vs permeability,
σ , for hp = 2h (dotted line), h (solid line), 0.5h (dash-dotted line), and 0.25h (dashed line);
(d) the eigenfunction magnitude, |ṽ|, of the least stable Orr–Sommerfeld mode for σ = 0.02,
Re = 3000, α =1, and hp = h (solid line) and 0.25h (dashed line).

relation to h decreases the amplitude of wall-normal perturbations at the interfaces.
This suggests that the destabilizing effects of wall permeability may be largely due to
the presence of a non-zero normal perturbation velocity on the surface of a porous
wall. Decreasing hp in relation to h thus diminishes the destabilizing effects of wall
permeability by decreasing the wall-normal perturbation velocity at the interfaces.
On the other hand, if hp increases to the point that perturbations naturally diminish
to zero before reaching the impermeable walls, further increasing hp has little or no
effect on the linear stability. This explains why the results for hp = h and hp = 2h in
figure 8(c) are visually indistinguishable.

6.4. The validity of ignoring inertial effects

Now that we have performed the linear stability analysis by neglecting inertial effects
in the porous regions, we can use our results to test the validity of setting the
maximum permissible laminar interface velocity to 5 % Um. When inertial effects are
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Figure 9. (a) The behaviour of F as σ increases from σmin to σmax using the parameters
ε = 0.6, hp =h, and τ = − 1.0 (dashed line), 0.0 (solid line), and 1.0 (dash-dotted line).
(b) The behaviour of the term RecU (±1)σ as σ increases from σmin to σmax using the
parameters ε = 0.6, hp = h, and τ = − 1.0 (solid line), −0.5 (dash-dotted line), 0.5 (dotted line),
1.0 (dashed line). The solid diamonds mark the permeabilities at which the laminar interface
velocities have a value close to 5 % Um.

important in the porous regions, the momentum equation (4.3) must be augmented
by the Forchheimer drag term,

1

εj

∂〈vj 〉
∂t

= −∇〈pj 〉f +
∇2〈vj 〉
εjRe

− 〈vj 〉
σ 2

j Re
− Fj · 〈vj 〉

σ 2
j Re

, j = 1, 2. (6.1)

It is important to realize that the Forchheimer term affects not only the perturbation
equations but also the following equation governing the laminar velocity profiles,
〈Uj 〉, in the porous regions of a channel with two identical porous walls,

0 = −dP

dx
+

1

εRe

d2〈Uj 〉
dy2

− 〈Uj 〉
σ 2Re

− F 〈Uj 〉
σ 2Re

, j = 1, 2, (6.2)

where F is a scalar. Even though the laminar profiles in the porous regions are
macroscopically uniform, there is a nonlinear drag due to inertial effects occurring
on the scale of the pores. Note from equation (6.2) that F can be written as the ratio
of the Forchheimer drag term, F 〈Uj 〉/(σ 2Re), to the Darcy drag term, 〈Uj 〉/(σ 2Re).
Hence, inertial effects are negligible in the porous regions when F � 1.

In a porous medium of packed granular material, F may be estimated, using a
modified form of the Ergun equation (see Macdonald, El-Sayed & Dullien 1979;
Whitaker 1996) as

F =
Re〈Uj 〉d

100(1 − ε)ε
, j = 1, 2, (6.3)

where d = σ (1 − ε)
√

180/ε3 is an average grain diameter. Using the critical Reynolds
numbers illustrated in figure 7(b) for ε = 0.6 and τ = − 1, 0, 1, we estimate F for
a particular permeability, σ , using the laminar Darcy velocity. Figure 9(a) illustrates
that for 0 � σ � 0.02 and −1 � τ � 1, F always remains less than 0.005. Note, however,
that equation (6.3) is not valid in the transition layers near the interfaces.

While the Forchheimer drag may be negligible in the porous regions outside the
transition layers, inertial effects may still be important near the interfaces. To estimate
the importance of inertial effects near the interfaces, we use the momentum transfer
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τ σ Rec

−1 0.0085 1059.79
−0.05 0.007 1278.09

0.5 0.0035 2242.58
1 0.0015 3095.29

Table 2. For ε = 0.6, hp = h, and τ = − 1, −0.5, 0.5, and 1: the maximum permeabilities, σ ,
and corresponding critical Reynolds numbers for which RecU (±1)σ < 0.1.

conditions of Ochoa-Tapia & Whitaker (1998) which include inertial effects. For the
laminar velocity profile in a channel with two identical porous walls, these conditions
reduce to

U = 〈Uj 〉, j = 1, 2, (6.4)

and
1

ε

d〈Uj 〉
dy

− dU

dy
= ∓

( τ

σ
U + γReU 2

)
, j = 1, 2, (6.5)

where γ , which accounts for the effects of inertia in the momentum transfer process,
is a dimensionless coefficient of order one that must be determined experimentally
(Ochoa-Tapia & Whitaker 1998).

The effects of inertia in the momentum transfer process may be neglected when
γ is found experimentally to be zero, or when the ratio of the two terms on the
the right-hand side of (6.5), γReU (±1)σ/τ , is much less than one. Because there
are currently no published experimental data for γ , we assume that the ratio γ /τ

is of order one and we estimate the importance of inertial effects in the interface
region using γReU (±1)σ/τ ≈ RecU (±1)σ , where Rec is the critical Reynolds number.
We calculated the critical Reynolds number in a channel with two identical porous
walls using the parameters 0.0002 � σ � 0.2, ε = 0.6, τ = − 1, −0.5, 0.5, and 1, and
hp =h, and observed that RecU (±1)σ increases with both σ and τ as illustrated in
figure 9(b). Note that we do not report results for τ =0 as this requires that γ is
also zero, in which case inertial effects can be neglected. For τ = − 1, RecU (±1)σ is
always less than 0.25; however, for τ = 1, RecU (±1)σ is already close to the value 0.5
when σ = 0.005, and is approaching the value 2 when σ = σmax . The permeabilities
σ = 0.005 and σ = 0.0135 at which the laminar interface velocities for τ =0.5 and 1
are on the order of 5 % Um, respectively, are marked with diamonds in figure 9(b).

Figure 9 illustrates that it is possible to neglect inertial effects in the porous regions
when the Forchheimer term and γReU (±1)σ/τ are both small with respect to unity.
Due to a lack of experimental data for γ and τ , an exact permeability at which
inertial effects become non-negligible is not known; however, it is not sufficient for
the laminar interface velocity to be less than 5% Um, unless of course γ = 0. If instead
we required RecU (±1)σ < 0.1, table 2 illustrates the maximum-allowable permeability
and corresponding critical Reynolds number for hp = h, ε = 0.6 and τ = − 1, −0.5,
0.5, and 1.

To the best of our knowledge, due to the complexity of the governing equations
and interface conditions, there are currently no published linear stability analyses
of coupled channel and porous flows which include inertial effects in the porous
regions. The above analysis is the first which illustrates that it is possible to neglect
inertial effects at very small permeabilities and that these permeabilities significantly
destabilize channel flow. Because we can only roughly estimate when inertial effects
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become important, we will continue using the criterion that the laminar interface
velocity must be less than 5 % Um with the understanding that this limit may be
too generous for some porous materials. It is important to understand, however,
that in fluid flows through porous media, there is generally no exact permeability
or volume-averaged velocity for which inertial effects suddenly become important.
Rather, experiments have shown that the effects of inertia tend to increase gradually
with increasing permeability and volume-averaged velocity (Costa et al. 1999).
Consequently, we do not expect our results to become suddenly unreliable as the
interface velocity becomes greater than 5% Um. Also note that because the Reynolds
number is small in the pores of a porous medium of small permeability, transition to
turbulence is unlikely to occur there.

6.5. Linear stability results for foametal and aloxite

To gain more insight into how a real porous material may affect the stability of a
channel flow, we fit the parameters ε and τ so that the porous material we model
behaves like foametal and aloxite, two porous materials used in the experiments
of Beavers & Joseph (1967). Beavers and Joseph proposed the following interface
condition, given below in dimensional form, which couples a fully developed laminar
channel flow to an adjacent porous flow governed by Darcy’s law,

du

dy
=

αBJ√
k

(uslip − 〈u〉). (6.6)

Note that the Beavers and Joseph interface condition (6.6) produces a discontinuous
slip velocity, uslip , at the interface. The volume-averaged velocity, 〈u〉, on the porous
side of the interface is given by Darcy’s law, while the slip velocity, uslip , on the
channel side is given by du/dy and the dimensionless constant αBJ which accounts
for the momentum transfer at the interface. Beavers and Joseph determined αBJ

experimentally for aloxite and three different foametals, labelled A, B, and C, using
a channel with an impermeable upper wall and a lower wall made of the porous
material. For each porous material, Beavers and Joseph varied the channel height
and measured the fractional increase in flow in the channel region, Φ , caused by the
presence of the porous wall,

Φ =
um − u∗

m

u∗
m

, (6.7)

where um and u∗
m are the mean velocities in a channel with a permeable lower wall and

an impermeable upper wall and a channel with two impermeable walls, respectively.
The coefficient αBJ was then determined by comparing the experimental results for
Φ with those predicted using the interface condition (6.6),

ΦBJ = 3σ

(
1 + σαBJ

σ + 2αBJ

)
. (6.8)

The interface conditions of Ochoa-Tapia & Whitaker (1995a) predict a fractional
increase in flow of

ΦOTW = 3σ

(
1 + σ/

√
ε

σ − 2τ + 2/
√

ε

)
. (6.9)

Because Beavers and Joseph did not report the porosities of their materials, we
model the behaviour of foametal A (αBJ = 0.78) and aloxite (αBJ = 0.1) by assuming
a reasonable porosity, ε, and then finding the corresponding coefficient, τ , which
produces the best match between the Φ predicted by equations (6.8) and (6.9).
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Figure 10. The behaviour of (a) the critical Reynolds number, Rec , and (b) critical wave
number, αc , as the permeability, σ , is varied from σmin = 0.0002 to σmax = 0.02 in a channel
with two identical porous walls of half-height hp =h made of foametal A (solid line, ε = 0.4
and τ = 0.7; dashed line, ε =0.95 and τ = 0.194) or aloxite (dash-dotted line, ε = 0.4 and
τ = 1.47). Solid diamonds mark the permeabilities at which the laminar interface velocities,
U (±1), have a value close to 5% Um.

Ochoa-Tapia & Whitaker (1995b) have already determined τ for these materials
using an arbitrary porosity of 0.4.

Figures 10(a) and 10(b) illustrate the stability characteristics of a channel with
two identical porous walls of half-height hp = h made of either foametal A (ε = 0.4,
τ = 0.7, solid line) or aloxite (ε =0.4, τ = 1.47, dash-dotted line). The porosities, ε, and
interface coefficients, τ , are those determined by Ochoa-Tapia & Whitaker (1995b).
Because foametals typically have very high porosities, figures 10(a) and 10(b) also
illustrate the stability results for foametal A using a high porosity, ε = 0.95, for which
we found that τ =0.194 provided the best fit to the experiments of Beavers & Joseph
(1967). Comparing the results for foametal A generated using ε = 0.4 (solid line) with
those generated using ε = 0.95, we note that the results for the critical Reynolds
number are visually indistinguishable, while those for the critical wavenumber differ
slightly at permeabilities above 0.01. Note that in a channel with walls made of
foametal A, the laminar interface velocity is on the order of 5% Um when σ =0.014,
while in a channel with walls made of aloxite, this occurs at σ = 0.002. In figure 10,
these permeabilities are marked with solid diamonds.

The results for foametal A are very similar qualitatively to the results presented in
§ 6.1 for ε =0.6 and τ = 0, while the results for aloxite are considerably different. In
figure 10(a), the critical Reynolds number for aloxite tends, unexpectedly, to increase
for small permeabilities in the range σ = [0, 0.0015] and thereafter begins to drop. We
believe that the increase in critical Reynolds number at very small permeabilities is
due to the considerable tangential velocity at the interface, due to the large interface
coefficient τ , and the strong resistance to flow normal to the interface, due to the
Darcy drag. In effect, for small permeabilities in the range σ = [0, 0.0015], the aloxite
interface behaves like an impermeable hydrophobic or slip surface which has been
shown by Lauga & Cossu (2005) and Min & Kim (2005) to increase linear stability.

7. Linear stability results for skewed laminar velocity profiles
We now consider the linear stability of skewed laminar velocity profiles in channels

with a permeable lower wall and an impermeable upper wall. To allow comparison
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Figure 11. (a) The trajectory of the Orr–Sommerfeld eigenvalues for Re = 3000, α = 1, and
β = 0, in a channel with an impermeable upper wall and a porous lower wall with constant
ε1 = 0.6, τ1 = 0, and h1 = h as σ1 is increased from σmin = 0.0002 (circled) to σmax = 0.02.
(b) The trajectory of the Orr–Sommerfeld eigenvalues for Re = 3000, α = 1, and β = 0 in a
channel with two porous walls with constant ε1 = ε2 = 0.6, τ1 = τ2 = 0, h1 = h2 =h, and σ1 = 0.02
as σ2 is decreased from σmax = 0.02 (circled) to σmin = 0.0002.

with the results presented in § 6.1 for a channel with two identical porous walls, we
begin by fixing the parameters ε1 = 0.6, τ1 = 0, h1 =h, and vary the permeability σ1

from σmin =0.0002 to σmax = 0.02.
Figure 11(a) illustrates the trajectory of the Orr–Sommerfeld eigenvalues as the

permeability is varied from σmin to σmax , while holding Re =3000, α = 1, and β =0
constant. The eigenvalues corresponding to σmin are circled and are within three
decimal places of the eigenvalues associated with a corresponding channel flow with
impermeable walls. To gain more insight, the circled eigenvalues in figure 11(b)
represent the Orr–Sommerfeld spectrum for a channel flow with two porous walls
using the parameters σ1 = σ2 = 0.02, ε1 = ε2 = 0.6, τ1 = τ2 = 0, and h1 = h2 = h. The
solid lines illustrate the trajectory of these eigenvalues as the permeability of the
upper wall, σ2, is gradually reduced to σmin = 0.0002.

Comparing figure 11(a) to figure 5(a), we note that the wall modes are less affected
in the case of a channel with only one porous wall. While two wall modes become
unstable in the channel with two porous walls, only the mode labelled 1 in figure 11(a)
becomes unstable in the channel with one porous wall. In figure 11(b), we see that as
the permeability σ2 is reduced to σmin in a channel with two porous walls, the unstable
wall mode labelled 1 becomes less unstable and the unstable wall mode labelled 2 is
stabilized.

In a channel with two porous walls, permeability is responsible for two new wall
modes, labelled 3 and 4 in figure 5(a). In a channel with only one porous wall, however,
permeability is responsible for only one new wall mode, labelled 4 in Figure 11(a).
In figure 11(b), we see that as σ2 is reduced to σmin , the mode labelled 3, which has a
symmetric eigenfunction in the case of a channel with two identical porous walls, is
suppressed, while the mode labelled 4, which has an antisymmetric eigenfunction in
the case of a channel with two identical porous walls, is significantly less affected. We
also note that while symmetry and asymmetry of the eigenfunctions are preserved in
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Figure 12. A comparison of (a) the critical Reynolds number, Rec , and (b) critical
wavenumber, αc , in a channel with two porous walls (dashed line, ε = 0.6, τ = 0, hp = h,
0.0002 � σ � 0.02) and a channel with only one porous wall (solid line, ε1 = 0.6, τ1 = 0, h1 = h,
0.0002 � σ1 � 0.02).

a channel with two identical porous walls, symmetry is broken in a channel with only
one porous wall and the eigenfunctions are all skewed toward the porous interface.

The trajectories of the porous modes labelled with a 7 in figures 11(a) and 11(b)
are not easy to distinguish. We have observed, however, that in a channel with only
one porous wall, the porous modes no longer occur in repeated pairs. Because the
upper porous wall has been removed, it is no longer physically possible to have a
pair of symmetric and antisymmetric eigenfunctions, ṽ, associated with each pair of
repeated eigenvalues.

Figures 12(a) and 12(b) illustrate the stability characteristics of a channel with an
impermeable upper wall and a porous lower wall characterized by the parameters
ε1 = 0.6, τ1 = 0, and h1 = h, and allow for a comparison with the results illustrated
in figure 7 for a channel with two porous walls. The critical Reynolds number and
wavenumber in the channel with only one porous wall are less affected by permeability
than in a channel with two porous walls. At a permeability of σ = 0.005, the critical
Reynolds number in the channel with two porous walls is 1719.60, while in the
channel with only one porous wall it is 2185.77. This may be due to the stabilizing
effect of the impermeable boundary conditions imposed at y = 1, and it may also be
due to the fact that asymmetric laminar velocity profiles tend to be linearly more
stable than symmetric velocity profiles, provided they do not have an inflection point
(Fu & Joseph 1970). Note, however, that for the small permeabilities considered in
this study, the laminar interface velocity is small and the profile is only slightly skewed
toward the lower wall.

Figures 13(a) and 13(b) compare our numerical results with the numerical and
experimental results of Sparrow et al. (1973). In those experiments, the critical
Reynolds number was measured in a channel with an impermeable upper wall
and a porous lower wall for a range of non-dimensional permeabilities, σ1, by varying
the channel half-height. Sparrow et al. used a foametal, different from those used
by Beavers & Joseph (1967), as a porous material. We model their porous material
by assuming a porosity of 0.95 and find that τ = 0.878 provides the best fit to
their Beavers and Joseph interface coefficient, αBJ = 0.146. For this combination of
porosity and interface coefficient, the laminar interface velocity grows quickly with
permeability. The permeability at which the laminar interface velocity is nearly 5%
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Figure 13. For the parameters ε1 = 0.95, τ1 = 0.878, and hp = h: (a) and (b) show a comparison
between the current study (solid line) and the numerical (squares) and experimental (triangles)
results of Sparrow et al. (1973); (c) and (d) illustrate the neutral stability curves and shaded
unstable regions for permeabilities σ1 = 0.009 and σ1 = 0.01, respectively.

Um, σ1 = 0.0025, is marked with a diamond. Figures 13(a) and 13(b) illustrate that our
numerical results are consistent with those of Sparrow et al. and that therefore the
approaches of Beavers & Joseph (1967) and Ochoa-Tapia & Whitaker (1995a) produce
very similar results for the critical Reynolds number and wavenumber. Unfortunately,
because Sparrow et al. (1973) did not publish spectra or eigenfunctions, we cannot
compare the two methods further. The main advantage of the approach of Ochoa-
Tapia & Whitaker (1995a) is that it should more accurately predict the shape of the
eigenfunctions in the porous regions. It is also a first step towards investigating the
stability of flows in the presence of interfaces with high-permeability porous materials
in which inertial effects are non-negligible.

Note that the numerical results of both Sparrow et al. (1973) and the current study
predict significantly higher critical Reynolds numbers than those which Sparrow
et al. observed experimentally. The discrepancy between the numerical results of
these studies and the experimental results of Sparrow et al. (1973) could be due to
the compounding of several factors. First of all, it is well established that even in
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channels with impermeable walls, the critical Reynolds number predicted by linear
theory is generally significantly higher than the Reynolds number which is observed
experimentally. Secondly, neither Sparrow et al. nor this study include inertial effects in
the porous region. The permeabilities, however, at which Sparrow et al. experimentally
measured the critical Reynolds numbers are out of the range of our assumptions due
to the large laminar interface velocity. Lastly, the porous interface may be more rough
than an impermeable wall and thus promote an earlier transition to turbulence.

It is interesting to note that around the permeability σ1 = 0.009, for which the
laminar interface velocity is about 16 % Um, a fold begins to form and quickly
deepen in the neutral stability curve, as illustrated in figures 13(c) and 13(d). Similar
curves have been observed previously by Chang et al. (2006) at similarly high laminar
interface velocities. The validity of these folds is doubtful, however, as we have only
observed them for large laminar interface velocities which violate our assumption of
negligible inertial effects in the porous regions. It is also interesting to note that at
permeabilities above σ1 = 0.015, the laminar interface velocity is more than 25 % Um.
The resulting skewed laminar profile has a significant stabilizing effect which causes
the critical Reynolds number to increase at permeabilities above σ1 = 0.015.

In order to asses the validity of the neutral curves presented in figures 13(c) and
13(d), we carefully analysed the work of Chang et al. (2006). Chang et al. (2006)
recently considered the linear stability of a channel flow with an impermeable upper
wall and a porous lower wall using the same analytical formulation as Sparrow
et al. (1973): the Navier–Stokes and continuity equations in the channel region,
Darcy’s law and the continuity equation in the porous region, and the Beavers
and Joseph condition at the interface. Peculiarly, while Chang et al. (2006) non-
dimensionalized the governing equations in the channel region using the channel
height, 2h, and the maximum laminar velocity, Umax , they simultaneously non-
dimensionalized the governing equations in the lower porous region using the height
of the porous region, 2h1, and the Darcy velocity, 〈u〉 = − k1(dp/dx)/µ. As a result,
they non-dimensionalized the permeability, k1, using the height of the porous region,
obtaining σch =

√
k1/2h1. Note that unlike our definition of the non-dimensionalized

permeability, σ1 =
√

k1/h, the ratio σch no longer represents a ratio between a length
scale characterizing the permeable material,

√
k1, and a length scale characterizing the

channel region, h. Chang et al. (2006) then arbitrarily fixed the non-dimensionalized
permeability, σch = 0.001, the porosity, ε1 = 0.3, and the Beavers and Joseph interface
coefficient, αBJ =0.1, and varied the ratio of the channel height to the height of the
porous region, d̂ =h/h1, between 0.1 and 0.3.

Chang et al. (2006) found that the linear stability of their problem was extremely
sensitive to the parameter d̂ , especially near the value d̂ = 0.12 where they observed
that the neutral curve became bi- and even tri-modal. The result that the linear
stability of their problem is very sensitive to a change in the parameter d̂ when
the porous layer is roughly 8 times thicker than the channel region disagrees with
our physically rational result. In fact, as discussed in § 6.3, the perturbations tend
naturally to diminish in the porous region, and the boundary conditions applied at
the external extremities of the porous layer have a diminishing influence on the linear
stability of the problem as the height of the porous layer increases. Note, however, that
by using two different non-dimensionalizations for the porous and channel regions,
Chang et al. (2006) are not fixing permeability and only varying the height ratio d̂ as
they claim. It can be shown that for σch = 0.001 and 0.1 � d̂ � 0.3, our definition of
the non-dimensionalized permeability varies between 0.0067 and 0.02. The resulting
laminar interface velocity, U (−1), varies between 17.5 % Um and 43.2 % Um. Despite
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the large laminar interface velocity, Chang et al. (2006) do not account for inertial
effects in their analysis, and consequently, their results are questionable. Also note that
their resulting critical Reynolds numbers are generally larger than the corresponding
value for a channel flow with impermeable walls because their laminar profiles are
significantly skewed.

8. Conclusion
This study considers the three-dimensional linear stability of a laminar flow in a

channel with porous walls. The flow in the channel region is governed by the Navier–
Stokes and continuity equations, while the flow in the porous regions is governed
by volume-averaged forms of the Navier–Stokes and continuity equations derived
by Whitaker (1996). The flows in the channel and porous regions are coupled by
the momentum transfer conditions of Ochoa-Tapia & Whitaker (1995a). Because
the momentum transfer conditions are extremely complex when inertial effects are
important, we simplify the problem by considering flows for which the inertial effects
in the porous regions can be neglected.

At the interfaces between the channel and the porous walls, there is a tangential
and normal velocity due to the exchange of momentum between the flow in the
channel and the flow in the porous regions. We found that the presence of a normal
velocity at the interfaces has a strong destabilizing effect. The presence of a tangential
velocity, on the other hand, has a stabilizing effect which has been observed previously
in studies of hydrophobic surfaces (Lauga & Cossu 2005; Min & Kim 2005). We
performed a parametric study by varying the permeability, interface coefficient τ , and
height of the porous regions and characterized their effects on the linear stability of
symmetric laminar velocity profiles in channels with two identical porous walls as
well as skewed laminar velocity profiles in channels with only one porous wall. We
summarize our conclusions for symmetric laminar velocity profiles in § 8.1 and our
conclusions for skewed laminar velocity profiles in § 8.2.

8.1. Linear stability of symmetric laminar velocity profiles

In channels with two identical porous walls, permeability significantly affects the
Orr–Sommerfeld spectrum in comparison with the spectrum associated with channel
flow with impermeable walls. Within our assumptions, permeability can destabilize
up to two wall modes and introduces a new pair of symmetric and antisymmetric
damped wall modes on the left branch of the Orr–Sommerfeld spectrum. Permeability
also introduces a new class of damped modes, which we refer to as porous modes,
which lie on a near-vertical line and have phase speeds that are nearly zero. We also
note that the porous modes approximate a continuous spectrum as the height of the
porous layers tends to infinity, hp → ∞.

Permeability also introduces a new class of porous modes in the Squire spectrum.
We do not, however, observe any new wall modes and also find that permeability has a
negligible effect on the pre-existing Squire modes. We conclude that the Squire modes
remain damped and that Squire’s theorem remains valid for all the permeabilities
considered in this study.

We validate our results for small permeabilities by setting the permeability of
both walls to zero in order to recover the linear stability of a channel flow with
impermeable walls. We found that small amounts of wall-permeability, corresponding
to a laminar interface velocity on the order of only 1 % of the mean channel velocity,
can decrease the linear stability of channel flows dramatically with respect to channel
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flows with impermeable walls. As permeability increases, the region of instability in
the (Re, α) parameter space becomes substantially larger. The front of the neutral
curve becomes more blunt and the number of unstable wavenumbers increases
accordingly. The critical Reynolds number is most sensitive to small permeabilities
where it experiences its sharpest drop. At higher permeabilities, the critical Reynolds
number becomes increasingly less sensitive to permeability and we speculate that
it could asymptote to values on the order of 10 % the critical Reynolds number
associated with channel flows with impermeable walls. We also observed that the
critical wavenumber and phase speed tend to increase with permeability.

We found that increasing the interface coefficient, τ , for a fixed permeability, σ,

increases the critical Reynolds number. We speculate that this stabilizing effect is due
to the fact that the tangential interface velocity of the laminar velocity profile and
the tangential perturbations increases with τ . In selected cases, when τ is large so
that there is a significant tangential velocity at the interface, and the permeability
is very small so that the normal velocity at the interface is very small, we find that
the porous interfaces behave like hydrophobic, or slip, surfaces, causing the critical
Reynolds number to increase with respect to its corresponding value for a channel
with impermeable walls.

We found that decreasing the half-height, hp , of the porous regions, in relation to
the channel half-height, h, has a stabilizing effect because it diminishes the amplitude
of the wall-normal perturbations, ṽ, at the interfaces. Conversely, we found that
increasing hp has a destabilizing effect. As hp increases, however, eventually the end
effects at the impermeable walls become negligible and further increasing hp has no
effect.

Using the critical Reynolds numbers we computed, we tested our assumption of
negligible inertial effects in the porous regions. We found that inertial effects can be
neglected in the porous regions when the Forchheimer coefficient, F , and the product
γjReU (±1)σ/τj are both small with respect to unity.

8.2. Linear stability of skewed laminar velocity profiles

Within our assumptions, in channels with only one porous wall, we only observed one
wall mode of the Orr–Sommerfeld spectrum to be destabilized by permeability. We
also observed that permeability only introduced one new wall mode, which is similar
in structure to the new antisymmetric wall mode observed in the linear stability of
channels with two porous walls. We draw the conclusion that the non-symmetric
geometry of the channel with only one porous wall suppresses the new symmetric
mode that is observed in the Orr–Sommerfeld spectra of symmetric laminar velocity
profiles. As was observed in the case of a channel with two porous walls, permeability
again introduces a new class of porous modes associated with the porous region.

Qualitatively, the trends of the critical Reynolds number and critical wavenumber
for a channel with only one porous wall are similar to the trends for a channel with
two porous walls; however, the critical Reynolds number and critical wavenumber
are noticeably less affected by permeability in the case of a channel with only one
porous wall. We speculate that this is due to the stabilizing effects of the boundary
conditions at the impermeable wall and the skewness of the laminar profile. We
found that the numerical results of this study are consistent with the numerical
results of Sparrow et al. (1973) and that both numerical results predict significantly
higher critical Reynolds numbers than those which Sparrow et al. (1973) observed
experimentally. The permeabilities, however, at which the critical Reynolds numbers
were measured experimentally are out of the range of our assumptions.
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Appendix. The bounded laminar velocity profile
The non-dimensionalized laminar velocity profile in a channel delimited by parallel,

rigid, homogeneous, isotropic, porous layers sealed by impermeable walls at y = ±
(1 + 2hj/h) is given by

U = 3
y2 + Qy + R

1 + 3R
(A 1)

in the channel region, and

〈U1〉 =
3

1 + 3R

[(
LH2 + E2M

E1E2 + H1H2

)(
e

√
ε1(2+4l1+y)/σ1 − e−y

√
ε1/σ1

)
+ 2σ 2

1

(
e

√
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)]
(A 2)

and

〈U2〉 =
3

1 + 3R
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− e
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√
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+ 2σ 2
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in the porous regions, where lj = hj/h, j = 1, 2,

Q =
E1E2(M + L + F2 − F1) + H1H2(F2 − F1) + E1LH2 − E2MH1

E1E2 + H1H2

, (A 4)

R =
E1E2(L − M + F1 + F2 − 1) + H1H2(F1 + F2 − 1) − E1LH2 − E2MH1

E1E2 + H1H2

, (A 5)

L = e2l1
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ε1/σ1
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2σ1√

ε1

+ σ 2
1 − 2τ1σ1

)
+ 2 − σ 2

1 + 2τ1σ1 − F2, (A 6)

M = e−2l2
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Fj = σ 2
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, j = 1, 2, (A 8)
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and

Ej =
1
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− e∓√

εj (1+hlj )/σ1 + e∓√
εj /σj

)
, j = 1, 2. (A 10)
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